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A FORTRAN !! PROGRAM FOR ANALYSIS OF

RADIOACTIVE DECAY CURVES

By John L. Need and Theodore E. Fessler

SUMMARY

The Fortran II language program described here was written to en-

able calculation of the half-lives as well as the initial magnitudes of

the several components in a measured radioactive decay curve. Any of

the components can be fixed as to magnitude and half-life and any of the

half-lives can be fixedj provided that there be at least one variable

remaining. The calculation proceeds by an iterative least-squares fit

to the experimental data. Convergence is not guaranteedj and a stepwise

approach may be necessary. The output consists of the amplitudes and

half-lives of all the components together with the best estimate of the

errors in those magnitudes calculated by the program. In additionj in-

formation is given that permits evaluation of the goodness of fit. The

program as written can handle up to i0 components (including background)

and up to 400 observations. It was written for an IBM 704 with a

floating-point trap and an $K memory.

INTRODUCTION

The analysis of multicomponent decay data is at best a tedious task

if done by hand calculation procedures. Unless some systematic procedure

such as a least-squares analysis is used, there is always the danger of

systematic error due to human bias. Even when a solution is obtained_

it is virtually impossible to assign an appropriate error estimate to

the solution without involving further lengthy calculations. For these

reasons_ the problem of fitting multicomponent decay data is a natural

candidate for solution by electronic high-speed computing machines. An

example of a program written for the Univac for the case where the half-

lives are fixed is that reported in reference I. An excellent discussion

of the general nonlinear least-squares fitting problem can be found in

reference 2.

The Fortran language program described in the present report was

designed to find the initial activities and unknown half-lives in a



multicomponent radioactive source by a least-squares analysis of count
rates. This program was developed at the Lewis Research Center for use
in determining the half-life and the activation cross section of in-
dium 117 from both Geiger-_Hller counter data and multichannel _-ray
pulse-height data. The initial version did not contain any error print-
out or goodnessof fit criteria, and experience with it led to their in-
clusion in the program described here. As presented, the code is useful
for single- or multicomponent decay problems including those situations
involving buildup of active daughter products.

It is the purpose of this report to present the mathematical method
and the particulars of the program operation in sufficient detail so
that others may use the code with a minimumof effort.

MATHEMATICALMETHOD

If the activity of a sample of radioactive material is measured
with a counter and if it is knownthat each event is independent of all
others, then the expected count rate maybe expressed as

q°(tk) = Z Aie-Bitk (i)
i

where _ is the count rate at the time t k and the Ai and Bi are
constants characteristic of the initial amount and the hal_-life of the
i th species in the sample, respectively. (The assumption of independence
of events is equivalent to an assumption that there are no active daugh-
ter species being formed and that the counting system is perfect, i.e.,
no dead time, geometry changes, etc. It is shownlater in this report
that the program as written can be used whenthere is an active daughter
species present.) It should be understood that equation (i) accurately
describes the situation that prevails. The problem to be solved is that
of determining the values of Ai and Bi that best fit an experimen-
tally determined set of count rates q)k determined at times tk, where
it is assumedthat the expected values of _k are given by equation (i).

Determination of the Parameters Ai and Bi

The method used to obtain the "best fit" is the least-squares
method. Thus, the problem to be solved is that of finding the set of
Ai's and Bi's for which the weighted sumof the squares of the
residuals
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(tk)- = R

k =i i=i

(2)

is a minimum. Here it is assumed that the weight _k of the kth datum

is solely dependent upon the precision with which _k is known, and

that the value of tk contains no uncertainty.

To make the problem amenable to solution, equation (2) is linear-

ized and the solutions are iterated until a convergence occurs. Let

Ai = (i + _i)Xi]
(3)

Bi (l + _i)[iJ

where _i and _i are corrections applying to the approximate values

% and Bi" The linearized fom of equation (2) becomes

_ IqD _ -Bi (l+_i) tkl 2
R = {k (tk) - _i (1 + _i )e

k=l i=i

2

__k=l _kI_(tk)-< _i(1 + _i-i= _i_itk)e-_itkl

(_)

(to the first order in _i and _i) for m observations to be fit _ith

n components. The problem is now that of determining the _i and _i

such that R is a minimum for a given set of A i and B i. After the

and _ are determined, the correction terms Ai_ i and Bi_ i are

added to the original _i and Bi to provide the input values for

another determination of _i and _i" The calculation is terminated

when all the _i and _i are as small as desired.
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The conditions for the minimum value of R are the coupled equa-
tions

k =i i =i

[--0 = _k tk) - l

k=l i=i

]

+ _i - Bi_itk)e-Bitkl_e-BZtk

]

_ •-%tJ_• -

+ _i - BiPitk)e IAz_-Bltk )e B_tk

J

(s)

where Z assumes values from i to n. Rewritten, equations (5) become

-- -B Ztk/- -B itk_

= _kAze _Aie 7

i=l k=l

and

m

Z
k=l

c_i

i=l k=l

/ _ _ -BZtk Bit

_ktA_Bztke (tk) - _le

i=l

= _k_AzB_tko?h° ]%

_k_AzB_tk e ]_%Bitk ;_it

i=l [k=l

Pi

(6)



where the coefficients of the _i and _i are explicitly written out.

These coupled equations can be written as

_ _kJI_(tk)[<P(tk) - _ _i(tk)] = t hz_iYi
k=l i:l i=l

(7)

if the following definitions are made,

Yi - _i 0 < i <_ n

]Yi =- _i-n n < i < 2n

(8)

9i(tk) -- _ie-Bitk

9i (tk) - -_i-n e-Bi-ntkBi-ntk

(9)

and

m

_ -B_t k- -Bitk
hz, i -= _kAze Aie

m

-B_ tk (-_i_nBi_ntke-Bi-ntk)hz'i =-Z _k_Ze

k=l

m

hz'i mZ _kI-_Z'nBZ-ntke-BZ-ntk)_ie-Bitk

k=l

m

hz'i _Z _k¢-_Z-nBz-ntke-_Z-ntk) I-_i-n_i-ntke-Bi-ntk)

k=l

Z,i < n

Z <n

n<i_2n

n< Z <_2n
i<n

n < I,i <_2n

(lo)
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The _i that satisfy equation (7) are given by

= k=l

where h -I is the inverse of the matrix h.

n- E  i(tk
i=l

(ll)

Error Analysis

Since the problem at hand treats counter data, the weight _k to
be applied to the k th count-rate datum is determined by the actual num-

ber of counts Nk observed in the time interval _k from which the

count rate is obtained by

 (tk) N__k
= (lZ)

The standard deviation in _(tk) is -_k/Tk or, from equation (12)_

_(tk)/_k. The weights _k are taken as the inverse of the square of

the standard deviation of _(tk) or

2
Nk Tk

{k _2(tk) Nk
(ms)

Test using X2. - The X Z test was chosen as the indicator of

goodness of fit. This test determines the probability that a repetition

of the observation would show greater deviations from the distribution

assumed to govern the data (eq. (i) in this case). The deviations are

measured by the parameter X _, which is defined by

all

data

points

(observed count - expected count) 2

expected count

For a value of X 2 equal to the number of degrees of freedom, the prob-

ability just described is about 0.5.



To apply the test, the weighted variance Qn is used.
present case of m data points and n components,

For the

m 2

Qn = m - 2n - i {k tk) - _i(tk
= i=l

With this definition it can be shown (ref. 5) that, if the data are
good (i.e., the assumptions leading to eq. (i) are valid), Qn has a X2
distribution with _= m - 2n - i degrees of freedom and its expected
value approaches unity as the numberof componentsis increased. Some-
times the minimumvalue obtainable from a set of data will be consider-
ably different from i, in which case it may be concluded that either the
basic assumptions behind equation (i) do not apply or that there is some
internal inconsistency in the data.

Errors in the final fit. - It is also desirable to determine the

best estimates of the standard deviations s in the final values of

A i and B i. These errors are functions of the errors in the count-rate

data only, and it can be shown from arguments in reference 4 that they

are given by

_(A i )

o(Bi) =

= [( -l)i,iQ]i/qi (15)

This equation is based upon the assumptions that the weights _k are

the best estimates of errors in the q0k, that the _k have a normal

distribution about the "true" values, and that the choice of n, the

number of components, is the correct one.

Reduced Number of Variables

The complete discussion so far has been carried out for the case in

which there are neither fixed components nor fixed half-lives. When any

component is considered as fixed, _(tk) is redefined as

_(tk) - Afe-Bftk; that is, the fixed component is subtracted, and the

remainder is then fitted with a new value of n.

When any half-life is considered as fixed_ the number of variables

(and the dimension of the matrix hi,z) is reduced by i. In this case



there are now n values of A and n - i values of B to be deter-
mined; a convenient manner in which to order the unknownsis to put the
componentwith the fixed half-life last, so that the resultant matrix
h is simply the original matrix with the last row and column removed.

DESCRIPTIONOFTHEPROGRAM

Input Data

The input consists of one card that serves as a title and then two
cards that carry the numberof components N, the numberof data points
M, the numberof componentsfixed in both magnitude and half-life NC,
and the numberof componentsfixed in half-life NE. The next M cards
carry the values of count rate, time, and weight for each data point.
There follow N cards with the initial values for the magnitudes and
half-lives and finally one card with the convergence requirement and a
weight factor. This completes the data for one case.

If fixed componentsor fixed half-lives are desired, the input
values of Ai and Bi must be ordered such that componentswith both
Ai and Bi variable comefirst, componentswith Bi fixed second, and
last of all, componentswith both Ai and Bi fixed.

Sampledata used to test the program are shownin table I as they
appear on the input data cards. These data were created by establishment
of a two-component decay plus a background corresponding to equation (i)
and use of a table of randomnumbersto distribute the count-rate "data"
about the expected values with a Poisson distribution. For convenience
the input and output are expressed in terms of half-life rather than
decay constant, the conversion

0.695

B i = _ , /Jgtl-2_i

being accomplished within the program. Thus the "data" of table I rep-
resent the case in which the "true" constants are

AI = 105.97 (tl/2) 1 = 27.75 min

A 2 = 75.00 (tl/2) 2 = 103.97 min

A5 = 12.50 (tl/2) 5 = _ (background)

and in which all but (tl/2) 3 are to be found; thus,
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N=3 M= 20

NE=I NC=O

for this case. Following the 20 data points are the three cards with

the trial values of _i and _i and the card with the convergence re-

quirement and a weight factor. The convergence requirement is the maxi-

mum value mi and _i may have at the completion of the calculation.

Both half-lives and count times must be in the same units.

_nree options are available for the input weight values:

(I) If the weights are to be those of equation (12), the input

weight value should be the number of counts in the datum Nk. The pro-

gram computes the weight

_k - _k2 W

where W is the constant weight factor appearing on the last data card.

This factor is used when it is convenient to enter the total number of

counts as a scaled number N_, as is often the case with counter data,

and is chosen such that Nk = N_W.

(2) If all points are to be weighted equally, the input weight is

entered as zero and the program sets

W

(3) If any other weighting is desired, the program is signalled by

the entrance of the input weight as the negative of the desired weight,

and the program multiplies this value by -i to obtain the weight used.

Program Operation

The program first prints a general heading to identify the calcula-

tion. (A listing of the program is given in the appendix.) The input

data are then read for one case, and the first three cards are printed

to identify the case. The weights are calculated, and then indices to

govern the flow of the program. These indices give the size of the ma-

trix, limits on summations, and so forth. The input values of _i and

B i are printed and then the main part of the computation is performed.
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The program computesthe values of the various functions in expres-
sion (7) and does appropriate bookkeeping whenthere are fixed components
and fixed half-lives. The matrix is inverted, and the values of the
correction terms Ti are calculated. They are comparedwith the con-
vergence requirement. If all the Yi are less than the _c°nvergence
requirement, the program calculates the final values of Ai and Bi
and proceeds with the output. If at least one _i is larger than the
convergence requirement, the program calculates the correction terms

and _i__i and adds them to the original input values to obtain a
new set of Ai and _i and begins anewwith the print-out of the new
set of Ai and Bi. Generally no more than i0 iterations are required

to obtain convergence with a convergence requirement of 0.001.

If convergence is not achieved, this will be evidenced either by a

failure of the matrix inversion routine or by some act that triggers the

floating-point trap. Both of these events return the computation to the

beginning of the next case. Since convergence to positive values of

Ai and Bi can be obtained by going through some negative values, the

occurrence of negative values for the _i and _i does not stop the

program.

The output consists of the final values of A i and Bi, the values

of the last set of _i, and the values of o(Ai) and (_(Bi) (the best

estimates of the standard deviation) for those values of A i and B i

determined by the program. Both the weighted variance Qn and the sum

of the weighted squared residuals are printed out. Finally, the time,

input counting rate, weight used, calculated cottuting rate, percent de-

viation, and weighted squared residual are given for each data point.

The results of using the program to solve the sample data of ta-

ble I are shown in table II, which contains the progr_ output for these

"data." The test using X2 tells that the data are statistically good,

and the J(A)i and o(B)i values agree quite well with the differences

between the calculated values of A i and B i and the true values from

which the "data" were derived.

Inversion of the matrix lhlk,_ to obtain lh-llk,Z is accomplishec

in a subroutine named MATINV (X,M). In this subroutine, a matrix X of
rank M is inverted by means of a unit matrix of the same order as in

the procedure given in reference 5. This subroutine is generalized to

the extent that, if a zero is encountered in the first element of a

pivotal row, the matrix is reordered by rows to bring a nonzero element

to the pivotal position, and the reordering is recorded so that the in-

verse obtained may be unscrambled by columns to arrive at the correct

inverse of X.
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The subroutine MATiNV(X_H) is provided with an error exit if
either the value of the argument M is improper (less than i) or the
inverse is nonexistent. In either case sense light i is turned on to
signal the calling program of trouble.

A second subroutine, TEFOUT(X,H) is used. It has the sole propose
of converting a floating-point n_ber K to a newnumber X' X i0M
where IX'I lies between 1.0 and 9.99 . and M is an integer.
This form makes it possible to get an output numberformat of more con-
ventional form than that provided directly by the Fortran system.

COMMENTSONTHEUSEOFTHEPROGRAM

The useful thing about this program is that it permits a determina-
tion of unknownhalf-lives and of the numberof componentspresent to-
gether with the best estimate for the errors in the derived half-lives
and initial activities. Thus_ the full statistical information present
in the data can be abstracted, no matter how poor the data. There are
three general classes of problems that this program can help to solve:
(i) Problems in _ich the half-lives are known and there may or may not
be an uncertainty in the nt_nberof componentspresent, (Z) problems in
which there are one or two unkno_ half-lives and the numberof compo-
nents is known, and (5) problems in _ich very little is knownas to the
numberof componentsand possible half-lives.

The solutions to the first two classes can be approachedby the
sameroute. The physical conditions that produced the measuredactivity
serve as a guide to both the n_ber and the half-lives of the possible
components. A hand plot of the data yields values of the magnitudes
that are used as the initial values for the machine fitting as well as
someidea of the unknownhalf-lives if there are any. The literature
will generally serve as an additional source for estimates of this half-
life.

The first step in the machine calculation is the determination of
the nuraberof componentspresent. This is done with all the half-lives
held fixed with estimates used for ur_knownvalues at this point. The
calculation will almost always cc_nvergein two iterations, the excep-
tions occurring whenunr_alistic fits are attempted. After the n

principal components have been established (these appear in the hand

plot), the question of the existence of the (n + i) st component is ap-

proached as follows. Cases a_'e run with the (n + i) st component chosen

successively to be each of the next three or so most probable half-lives.

These fits must now be compared with the fit with n components to see

whether there has been an improvement in XZ.
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in addition, the F-test should be employedto determine whether the
amplitude of a particular (n + I) st trial componentis zero. To perform
this test the statistic

(m - n - I)Q n - (m- n - 2)Qn+ 1

s_ = qn+l (16)

is formed, where Qn is given by equation (14) and the s_oscript n

refers to the number of components. Note that the denominator of equa-

tion (14) becomes (m - n - i), since each component now contributes only

one variable. The F-test then states that for Sj _ Fa(_{ ) it can be

assumed that An+ I is nonzero with the probability a of being wrong,

where Fa(_ ) is defined by

a = X)dX

Fa( )

A table of the distribution of Fa is given in reference 6 and is re-
produced here in table iii for convenience. The results of this test

are not always as clear-cut as might be wished, but they do provide a

basks for decision. Often the addition of a component will cause the

case to converge to negative values of the Ai_ and (in the absence of
known o_ suspected parent-daughter relations) this is taken as evidence

t]_at the added component is not present.

In some cases two (or more) of the trials for the (n + i) st compo-

nent will give fits that are difficult to choose between_ and the case

_en both half-lives are added (as (n + I) st and (n + 2)nd components)

gives nonsense. To decide between them a run is made with n + i com-

ponents but with the half-life of the (n + i) st component determined

by the calculation. The trial value closest to the computer-derived

value is then chosen.

When the number of components has been established_ any ur_nowr_
half-lives are then solved for. If the final values of the unknown half-

lives are widely different from the estimated values used in the deter-

mination of n_ it will be useful to use these new values in a redeter-

mination of n.

The program output should always be examined to ascertain the re-

liability of the results. To make this job simpler, the percent devi-

ation (percent difference between the calculated and observed values

of a cou_t-rate datum) and the weighted square of each residual have

been included in the output listing (table II). The percent deviation
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columnmay be examinedfor grouping of positive or negative differences.
Extensive grouping of errors of one sign indicates that either a wild
data point (usually near the middle of the group) is at fault or that
a significant componenthas not been accounted for. If a wild data
point is the cause, it showsup in the corresponding value of the
weighted square of the residual as a high value possibly due to a data
reduction error in either the count rate or the weight factor. Exam-
ination of the residuals is also of help in determining the cause of
unexpectedly large values from the X2 test.

For the third class of problems, in which there is very little
knom_about the nmmberof componentsand the values of the half-lives,
the appr<:achdescribed previously can be used, but it maywell prove
more efficient to let the half-lives vary earlier than indicated. There
is no guarantee of success in these searches. Whenmore than three half-
lives are permitted to vary, the convergence gets uncertain; the program
must be led very carefully to the correct region of input trial values.

There are cases where the experimenter must constrain the program.
As an example, it is knownthat two componentswith half-lives of 6 and
IS minutes should be present; the program muchprefers one component
with a half-life of 12 minutes, but it is knownthat no such half-life
can possibly be present. Such behavior is caused by lack of sufficient
information in the count-rate data.

Negative values for the intensity of a componentmay arise from a
real parent-daughter relation or from a systematic error in t]_e data,
such as an improper dead-time correction. Negative values may also in-
dicate an improper assumption of the counter background. Here it should
be pointed out that, for most cases, it is best to let the program deter-
mine the background amplitude. It is particularly important that the
%ackgroundbe included in the count-rate data submitted to the machine,
since prior subtraction of the background alters the statistical assump-
tions _sed in the error analysis and thus invalidates the derived quan-
tities.

Even though the program as described seemsto exclude the case of
a parent-daughter relation, it does not do so. The quantities Ai ob-
tained from the program for this case are not the initial activities,
however, but are related to them in a simple manner. For a parent-
daughter relation the following expressions give the time dependence
of the two populations

_i = _ e-}'It

_2 : _ e-h2t +
h2 - _i

(17)
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where subscripts i and 2 refer to the parent and daughter, respectively.

The _0 are the populations at time zero, and the h are decay con-

stants.

The detector generally has different efficiencies C I and C 2 for

counting the decay products of the two species so that when the activity

of this mixture is counted, the total count rate is given by

At = Clhl_ + CZ_2Z2

C2h2_0hl (e-hlt _ -h2t= Clhl_Oe-hlt + C2x2EOe-X2t + _ ---_i e ) (is)

Rewriting this to make the coefficients of the two exponential terms

explicit gives

C2 X2 _e-Xlt IC

The program obtains the coefficients of the exponents so that the de-

rived values AI and A2 are

C I h Z _ h : + CI hZ'-- h I

A2 : C2h2_ _ Clhl _ C2 h2 = 0 C2 h2
C I h 2"_--hi A2 - A0 CI h 2" _-hl

where the A 0 are the true initial activities.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, July 25, 1962



APPENDIX - MULTIPLE DECAY ANALYSIS PROGRAM

C MULTIPLE DECAY ANALYSIS PROGPAM

DIMENSION ARRAY{20, 20), PHI(400), TAU(400), WT(400), COLI20),

1ANS(20)P UNIT(21)9 A(IO), B(10)9 OUT(60}, NOUTI60), RESID(400),

2CALCI400), WTRESIaOO)

SENSE LIGHT 0

100 WRITE OUTPUT TAPE 6t 10

10 FORMAT(46H] UNFOLDING SOLUTION OF MULTIPLE DECAY DATA )

C INPUT BEGINS

READ INPUT TAPE 79 20

20 FORMAT(72H DATA OF 3/18/60o (TIMES MEASURED IN MINUTES)

1 )

READ INPUT TAPE 7, 309 N9 M, NC9 NE

30 FORMAT(22HO NO, OF COMPONENTS= I29 21H, NO. OF DATA POINTS= I3,

123H, NO. FIXED COMPONENTS=I1 / 25H NO° OF FIXED HALF LIVES= I1)

READ INPUT TAPE 7, 409 (TAU(I)t PHI(I), WT(T), I:l, H)

40 FORMAT(6H TIME= F8°3, 9H COUNT= F8.3, lOH WEIGHT: F8.3)

READ INPUT TAPE 79 509 (A(I), B(I)t I=l, N)

50 FORMATIgH A= FB.3, 5H B= F8°3)

READ iNPUT TAPE 7, 60¢ CONV¢ WTFACT

60 FORMAT(27H CONVERGENCE REQUIREMENT= F8.59 15H WEIGHT FACTOR=

IFIO°5 )

WRITE OUTPUT TAPE 6, 20

WRITE OUTPUT TAPE 69 30, N, M, NCp NE

C COMPUTATION BEGINS, COMPLITE WEIGHTS

DO 140 I=19 M

WT(1)= WTII)*WTFACT

IF(WT(I;) 110, 120, 130

110 WTII)=-WT(1)

GO TO 140

12o WT(1)=WTFACT/PHI(1)

GO TO 14r

130 WT(II=WT(I)/PHI(1)**2

140 CONTINLIE

DO 150 I=l, N

150 B(I)=-O,60315/B(I)

C GENERATE INDICES

NJJ=2*N

NPNC=N

N=N-NC

NPO=N+]

NJ=2*N-NF

NI= 2"N+1

NL=N-NE

NK=NL+I

C INTERMEDIATE OUTPUT

WRITE OUTPUT TAPE 6, 65, (I, I=I, NPNC)

65 FORMAT(4OHO TRIAL VALUES OF A(II AND B(1) / 7HO

19111 )

250 DO 255 I:l, NPNC

J:I+NPNC

OUT(1)=A(1)

255 OUT{JI=-O.69315/B(I}

DO 260 I=1, NJJ

CALL TEFOUTIOUT(I)¢ NOUT(I))

260 CONTINUE

WRITE OUTPUT TAPE 6, 70, (OUT(1)9 NOUT(I)9 I=1, NPNCI

70 FORMAT(6HOA(1)= I0(F8.3, I3))

II=NPNC+I

WRITE OUTPUT TAPE 6, 75, (OUTII), NOUTII), I=II, NJJ)

75 FORMAT(6H B(I)= I0(F8.3, IBl)

I: 15,

15
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C COMPUTATION PROCEEDS_ CALCULATE PSIII)
160 DO 170 I=I, NJ

COL(I}=OoO

DO 170 J_l. NJ

170 ARRAYII,J)=O.O

DO 200 J=1, M
DO 180 K=I. NJ

180 UNIT(K)=OoO

UNITINI)=PHI(J)
DO 190 I=l, N

Y=B(1)*TAUIJ)

IF(25.0+Y) 183. 186. 186
183 BOLD=O°O

GO TO 190

186 BOLD=EXPF(Y)

UNIT(I}=A(1)*BOLD

K=I+N

UNIT(K)=-A(1)*B(1)*TAU(J)*BOLD

190 UNIT(NI)=UNIT(NI)-UNIT(1)

C CORRECTION FOR FIXED COMPONENTS
IF(NC) 191, 1919 1910

1910 DO 1930 I=NPOo NPNC

Y=B(1)*TAU(J)

IF(25.0+Y) 1930. 1920t 1920

1920 UNIT(NI)=UNIT(NI)-A(1)*EXPF(Y)
1930 CONTINUE

C SET UP MATRIX AND COLUMN VECTOR
191 DO 200 L=I. NJ

DO 199 K=I. NJ

199 ARRAY(K,L)=ARRAYIKtL)+WT(J)*UNIT(K}_UNITIL}

200 COL(L)=COL(L}+UNIT(L)*UNIT(NI)*WT(J)

C INVERT MATRIX

211 CALL MATINV(ARRAY, NJ)

IF (SENSE LIGHT 1) 212, 213

212 WRITE OUTPUT TAPE 6, 2120

2120 FORMAT(2OHO RESTART BY MATINV l

GO TO 100

C COMPUTE CORRECTION TERMS

213 DO 220 I=I. NJ

ANS(1)=O.O

DO 220 J=l, NJ

C CORRECT EXPONENTS
220 ANS(1)=ArS(II+ARRAY(I,J)*COL(J)

IF(NL) 226, 226, 221
221 DO 225 I=I_NL

If= I+N

225 B(1)=B(II*(I°O-ANS(II))

226 XMAX= 0.0
C CORRECT COEFFICIENTS

DO 230 I=I,N

A(II=A(I}*(I.O+ANS(I))

230 XMAX=MAXIF(XMAX, ABSF(ANSII)I)

C CONVERGENCE TEST

IF (XMAX-CONV} 240, 240, 250

C COMPUTE CALCULATED VALUES

240 DO 245 I:1, M
CALC(1)=O°O

DO 245 J=l, NPNC

245 CALC(I}=CALC(1)+AIJ)*EXPF(B(J)*TAU(1))
SORES:O,O
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C COMPUTE PERCENTAGE DEVIATION AND WEIGHTED SQUARED RESIDUALS
DO 246 I=1, M

RESID(I)=(CALC(I)-PHI(I))/PHIII)

WTRES(I)= WT(I)*(RFSID(I)*PHI(I))**2
246 SQRES= SQRES+WTRES([)

C COMPUTE WEIGHTED VARIANCE

WVAR=SORES/FLOATF(M-NJ-I)

C OUTPUT BEGINS, DEFINE OUTPUT QUANTITIES

280 DO 281 I=I,N

J=6"I-5

OUTIJ)= A(I)
OUT(J+]) = -0.69315/B(I)
OUT(J+2)=ANS(I)

2810UT(J+&)=AiI)*SORTF(ARRAY(I,I)*WVARI
C BRANCH IF ALL FIXED EXPONENTS

IF(NL) 2r2, 282, 284
282 DO 283 I=I,N

J=6-I-5

OUTIJ+3)=O.O
283 OUT(J+5)=O.O

GO TO 291
284 DO 285 I:I,NL

J=6-I-5
II= I+N

OUT(J+3)=-ANS(II)

285 OUT(J+5}=(-O.69315/B(1))*SQRTF(ARRAY(IItII)*WVAR}

C BRANCH IF ANY FIXED EXPONENTS

IF(NE) 291, 291, 286
286 DO 290 t:NK,N

J=6"1-5

OUT(J+3)=O°O
290 OUT(J+5)=O°O

291J=6N

C OUTPUT COEFFICIENTS AND ERRORS

DO 300 I=i, J
CALL TEFOUT(OUT(1), NOUT(1))

3OO CONTINUE

WRITE OUTPUT TAPE 6, 90, (OUT(If. NOUT(1). I=1, J)

90 FORMAT_24H1 FINAL VALUES O_TAINED // 94H A B

I ALPHA BETA SIGMA(A) SIGMAIB)
2 //16iFll,4, I3)))

C BRANCH IF ANY FIXED COMPONENTS

IFINC) 355, 355, 340

340 DO 350 I=NPO, NPNC
OUT(1)=A(I)
CALL TEFOUT(OUT(I), NOUT(1)]
OUT(2)=-O°69315/B(I)
CALL TEFOUT (OUT(2), NOUT(2))
WRITE OUTPUT TAPE 6, 95, OUTrll, NOUT(I), OUT(2), NOUT(2)

95 FORMAT(2(Fll.4, I3))
350 CONTINUE

C OUTPUT WEIGHTED VARIANCE AND WEIGHTED SQUARED RESIDUALS

355 OUT(1)=WVAR

CALL TEFOUT(OUT(1), NOUT(I))
OUT(2)=S_RES

CALL TEFOUTIOUT(2), NOUT(2))

WRITE OUTPUT TAPE 6, 975, OUT(1), NOUT(1), OUT(2), NOUT(2)

975 FORMAT(19HOWEIGHTED VARIANCE=FII°4,13.40H SUN OF WEIGHTED SQU

1ARED RESIDUALS=F11°4. 13)
C OUTPUT DATA POINT OUANTITIES
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360 WRITE OUTPUT TAPE 6, 40
400 FORMAT(114HO TIME OBSERVED RATE WEIGHT USED

IALCULATED RATE PER CENT DEVIATION WT SO RESIDUALS / 2H
DO 33 I= 1,M
OUT(1 :TAU(I)
OUT{2 =PHI(I)
OUT{3 =WTII)

OUT(4 =CALC(1)

OUT(5 =IO0.OWRESID(I)

OUT(6 = WTRES(1)
DO 320 J=1, 6

CALL TEFOUT(OUT(J), NOUT(J))

320 CONTINUE

330 WRITE OUTPUT TAPE 6, 410, (OUT(J)o NOUT(J)p J=I, 6)

410 FORMAT(Fg.4,13, F13.4,13t F15.4113, F16.4,13, F21.4,13, F17.4,13)
GO TO 100

C THIS SUBROUTINE INVERTS A SOLARE MATRIX WITH SIDE M IN SIZE.

SUBROUTINE MATINV(X,M)

DIMENSION X(20,20), K(20)

FREQUENCY 105(1,0,1). 125(5,1.5)t 155(1,0,1), 160(i,0.0)p 175(lt0,
11), 230(1,2,1)

C TEST FOR MATRIX SIZE

IF (M-I) 190, 20, 30
20 X(l_l): 1.0/X(1_1)

GO TO 245
C INITIALIZE ROUTINE CONSTANTS

30 TEST=O.O

MM=M-1

DO 100 I=I, M

100 K(1)=I

DO 150 N=lt M

C TEST PIVOTAL ELEMENT
105 IF(X(1,N)) 110, 160, 11

C MATRIX INVERSION BY ONE COLUMN
110 A=X(I.N)

DO 120 I=l, MM

120 X(ItN)=X(I+ltN)/A
X(MtN):I,0/A

DO 150 J=1_ M

125 IF(J-N) 130, 150, 130
130 A=X(1,J)

DO 140 I=i, MM

140 X(I_J)=X(I+ltJ)-A*X{I,N)

X(M,J)=-A*X(M,N)
150 CONTINUE

C SEARCH FOR ROW WITH NON-ZERO ELEMENT IN =IRST COLUMN
155 IF(TEST) 2209 245_ 220

160 IF(N-M) 170, 190o 190

170 NN:N+I
DO 180 L=NN9 M

175 IFIX(I,L)) 200. 180, 20

180 CONTINUE
C SENSE LIGHT1 EXIT IF MATRIX HAS NO INVERSE

190 SENSE LIGHT 1

GO TO 245
C REORDER MATRIX TO OBTAIN _ION-ZERO PIVOTAL ELEMENT

200 DO 210 I=19 M
HOLD=X(ItN)

X(ItN)=X(I,L)
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210 X(19L):HOLD
LL:K(N)
K(N)=K(L_
K(L):LL
TEST=l,0
GOTO 110

UNSCRAMBLEREORDEDMATRIXTOOBTAINCORRECTINVERSE
220 DO240 I:19MM
230 IF(K(1)-I) 2509 2409 25
240 CONTINUE
245 RETURN
250 L:K(1)

DO260 6=19 M

HOLD:X(19J)

X(19J):X(L_J)

260 X(LgJ):HOLD

K(1):K(L)

K(L)=L
GO TO 230

SUBROUTINE TEFOUTIXgl)
A=40,O+(O,43429448*LOGF(ABSF(X)))

X:SIGNF(EXPF(MODF(Atl,0)/O,4_429448)gX)
I=XINTF(A)-40
RETURN
END
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NASA _CH_C_ N0_ _I_3

A FORTRAN II PROGRAM FOR ANALYSIS OF

RADIOACTIVE DECAY CURVES

By John L. Need and Theodore E. Fessler

October, 1962

Page 7: Paragraph 2 should read

It is (m - 2n - I)Q n that possesses a X 2 distribution with (m - 2n - i)

degrees of freedum. Sometimes the minimum value obtainable from a set of data

will be considerably different from i_ in which case it may be concluded that

either the basic assumptions behind equation (i) do not apply or that there is

some internal inconsistency in the dats_ It will be noticed that the statistic

m

%=m- gn- _k
i=l

k=l

m

k -  kh(tk'
1

=m-_n " -Nk

k=l
This is of the form

i Zm- 2n- i

all

data

points

and is, therefore, not exactly ×2/(m - 2n - I).

(observed count - expected count) 2

observed count

Page 17: Statement 291 should read

291 J = 6*N

E-1620 Issued 2-26-65 Page i of 2 pages



Page 19: Subroutine TEFOUTshould read

SUBROUTINE TE_UT (X,I)
IF (X)2,1,2

1 I=O

RETLmN

m_o.o+(o._3_29_8*L0_F(ABSF(X)))
X=SIOm_(_X_(MODF(A,l.0)/0._3_29_48),X)
I--Xn_(A)-4o
RETURN

END

2 Issued 2-26-63 Page 2 of 2 pages NASA-Langley, 1963E-1620
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